US009471322B2

az United States Patent (10) Patent No.: US 9,471,322 B2
Blasco et al. 45) Date of Patent: Oct. 18, 2016
(54) EARLY LOOP BUFFER MODE ENTRY UPON g’;gé’gg i 1;; }gg; I(\:Ihi)
,8U3, ogami
NUMBER OF MISPREDICTIONS OF EXIT 5803142 A 4/1999 Moyer et al.
CONDITION EXCEEDING THRESHOLD 5.951.679 A 0/1999 Anderson et al.
6,052,776 A 4/2000 Miki et al.
(71) Applicant: Apple Inc., Cupertino, CA (US) 6,076,159 A 6/2000 Fleck et al.
6,269,440 Bl 7/2001 Fernando et al.
(72) Inventors: Conrado Blasco, Sunnyvale, CA (US); 2’247151;’;22 g} léi %88?‘ Is’artlilase:r:lthy
i s s ingh et al.
Ian D. Kountanis, Santa Clara, CA 6.950.929 B2 9/2005 Chung e al.
(Us) 6,959.379 Bl 10/2005 Wojcieszak et al.
6,963,965 B1 11/2005 Anderson
(73) Assignee: Apple Inc., Cupertino, CA (US) 7,278,013 B2 10/2007 Booth
7,302,557 B1 11/2007 Hwu et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 294 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 14/179,204 EP 1107110 A2 6/2001
GB 2375852 A 11/2002
(22) Filed: Feb. 12, 2014 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS

US 2015/0227374 Al Aug. 13, 2015

International Search Report and Written Opinion in application No.

(51) Int.CL PCT/US2013/043328 mailed Dec. 16, 2013 pp. 1-10.
GOG6F 9/30 (2006.01) (Continued)
GOG6F 9/38 (2006.01)
GO6F 1/32 (2006.01) Primary Examiner — Kenneth Kim
GOGF 9/32 (2006.01) (74) Attorney, Agent, or Firm — Rory D. Rankin;
(52) US.CL Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
CPC ..ot GO6F 9/381 (2013.01); GOGF 1/3287
(2013.01); GOGF 9/30058 (2013.01); GO6F (57) ABSTRACT

9/30065 (2013.01); GOGF 9/325 (2013.01):
GOGF 9/3806 (2013.01); GOGF 9/3844
(2013.01)

Systems, processors, and methods for determining when to
enter loop buffer mode early for loops in an instruction
. . . stream. A processor waits until a branch history register has
(58) Field of Classification Search saturated before entering loop buffer mode for a loop if the
None . processor has not yet determined the loop has an unpredict-
See application file for complete search history. able exit. However, if the loop has an unpredictable exit,
. then the loop is allowed to enter loop buffer mode early.
(56) References Cited While in loop buffer mode, the loop is dispatched from a
U.S. PATENT DOCUMENTS loop buﬁe.:r, and the front.-end of the processor is powered

down until the loop terminates.

5,303,357 A 4/1994 Inoue et al.
5,493,566 A 2/1996 Ljungberg et al. 20 Claims, 7 Drawing Sheets

]
|

Fetch Front End Branch uPredrc(rcn i
Ei init |

i

N

Lane | Lane | | I Lane
0

Loop Bufter
Contro! Unit
325

Loop Buffer 320

.

N

Armed | Tag | Gonfidence | Valid

Earty Loop Buler Mode Tabie 330

Oecoders

b

To Map/Dispatch Unit

US 9,471,322 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,873,820 B2
2002/0178350 Al
2003/0163679 Al
2004/0123075 Al
2004/0193858 Al
2005/0015537 Al*
2006/0095750 Al
2006/0107028 Al
2006/0242394 Al
2007/0113058 Al
2007/0113059 Al
2007/0130450 Al
2009/0113192 Al
2009/0217017 Al*
2010/0064106 Al
2011/0107071 Al
2011/0252118 Al
2011/0298509 Al
2012/0079303 Al 3/2012 Madduri
2012/0185714 Al 7/2012 Chung et al.

2013/0339699 Al* 12/2013 Blasco-Allue et al. 712/241
2013/0339700 Al* 12/2013 Blasco-Allue et al. 712/241

1/2011 Knoth
11/2002 Chung et al.
8/2003 Ganapathy et al.
6/2004 Almog
9/2004 Ahmad et al.
1/2005 Asaad et al.ccceevvennnee 711/2
5/2006 Nye et al.
5/2006 Meuwissen et al.
10/2006 Uchiyama
5/2007 Tran et al.
5/2007 Tran
6/2007 Chiao et al.
4/2009 Hall et al.
8/2009 Alexander et al. 712/241
3/2010 Yamada et al.
5/2011 Jacob (Yaakov)
10/2011 Pantos et al.
12/2011 Khoury et al.

FOREIGN PATENT DOCUMENTS

JP 563314644 A 12/1988
JP H04307624 A 10/1992
JP H04307625 A 10/1992
JP H0991136 A 4/1997
JP H10154098 A 6/1998
JP H10177482 A 6/1998
JP 2000298587 A 10/2000
JP 2001195302 A 7/2001
JP 2002516425 A 6/2002
JP 2004038601 A 2/2004
JP 2010066892 A 3/2010
™ 1362001 B 4/2012
WO WO099/60460 A2 11/1999
WO WO002/37271 A2 5/2002

OTHER PUBLICATIONS

Extended Search Report in European Application No. 13171667.2,
mailed Mar. 27, 2014, pp. 1-5.

Office Action in Japanese Patent Application No. 2013-125334,
mailed Aug. 4, 2014, 12 pages.

Notice of Preliminary Rejection in Korean Patent Application No.
10-2013-68355, mailed Aug. 18, 2014, 10 pages.

Final Office Action in Japanese Patent Application No. 2013-
125334, mailed Jan. 15, 2015, 10 pages.

Panis, et al., “A Scalable Instruction Buffer and Align Unit for
xDSPcore”, IEEE Journal of Solid-State Circuits, Jul. 1, 2004, pp.
1094-1100, vol. 39, No. 7, IEEE Service Center, Piscataway, NJ,
USA.

Extended Search Report in European Application No. 13170364.7,
Oct. 22, 2013, pp. 1-8.

International Search Report and Written Opinion in application No.
PCT/US2013/043335 mailed Dec. 13, 2013 pp. 1-12.

Zuluaga, et al. “Introducing Control-Flow Inclusion to Support
Pipelining in Custom Instruction Set Extensions”, IEEE 7th Sym-
posium on Application Specific Processors. Jul. 28, 2009, 9 pages,
http://www 1 .cs.ucr.edw/faculty/philip/papers/conferences/sasp09/
sasp09-ise.pdf. [Retrieved on Dec. 1, 2013].

Office Action in Japanese Patent Application No. 2013-125335,
mailed Aug. 4, 2014, 8 pages.

Notice of Preliminary Rejection in Korean Patent Application No.
10-2013-68472, mailed Aug. 18, 2014, 10 pages.

Wu, et al., “Instruction Buffering for Nested Loops in Low-Power
Design”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Jul. 1, 2006, pp. 780-784, vol. 14, No. 7, IEEE Education
Activities Department, Piscataway, NJ, USA.

Final Office Action in Japanese Patent Application No. 2013-
125335, mailed Jan. 7, 2015, 4 pages.

Office Action in Taiwan Patent Application No. 102121212, mailed
Feb. 25, 2015, 15 pages.

Communication pursuant to Article 94(3) EPC in European Appli-
cation No. 131716672, mailed Mar. 3, 2015, 5 pages.

Non-Final Office Action in U.S. Appl. No. 13/524,478, mailed Mar.
19, 2015, 19 pages.

Non-Final Office Action in U.S. Appl. No. 13/524,508, mailed Apr.
7, 2015, 19 pages.

Notification of the First Office Action in Chinese Application No.
201310353450.4, mailed May 6, 2015, 26 pages.

Final Office Action in U.S. Appl. No. 13/524,478, mailed Jul. 9,
2015, 21 pages.

Notification of the First Office Action in Chinese Application No.
201310233540.X, mailed Jul. 1, 2015, 18 pages.

Office Action in Taiwan Patent Application No. 102121215, mailed
Jul. 22, 2015, 12 pages.

Final Office Action in U.S. Appl. No. 13/524,508, mailed Aug. 18,
2015, 18 pages.

Notification of the Second Office Action in Chinese Application No.
201310233540.X, mailed Mar. 4, 2016, 7 pages.

Notification of the Third Office Action in Chinese Application No.
201310233540.X, mailed Jun. 14, 2016, 7 pages.

* cited by examiner

US 9,471,322 B2

Sheet 1 of 7

Oct. 18, 2016

U.S. Patent

I 9l

SLT x0jduwio] 40888004

1A
D
577
BUYIBT
2l
PIL P
Nd2

Gck
g

¥

5 5 94

bk AHd
IBHOIUOY
Aiouispy

PR A

AHd

0oL

US 9,471,322 B2

Sheet 2 of 7

Oct. 18, 2016

U.S. Patent

8YoB:
TR

¢ Oid

) 757
{10)) 80BLBI 807

FET oneny pesy

GEZ ensenty aiois

0ed
() s
Juswsbeauew Ao

e

-
{187y Hun 8ICIG/PRGT

#io
SHU} UOHN0BXT

JBUNG 18pI0dy

91z
U yosedsig/deny

Sic
Jgyng dooy

71 84280
YOGS
i1

giauin
UOBOIDAE
UGHOBACT

YouBis

A4
Hun
(73} spossg

PUE o8

017 8403

%~

U.S. Patent Oct. 18, 2016 Sheet 3 of 7 US 9,471,322 B2

Fetoh Front End

i
3

e Unit ;
i
s

e
£ n]
410 » 318
b e oo o e
i
N
9 k k ¥
Lane | Lane e.. 1 Lane
g 1 -1
Sl A
Loop Buffer
. Control Unit
. 328
3
Loop Buffer 320
R
k % k .
Y Armed l Tag l Confidence | Valid
Y
y ¥)
340 Q\m g“é
Y Earty Loop Buffer Mode Table 330

¥

Decoders
348

\
To Map/Dispatch Unit

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 7 US 9,471,322 B2

T i
U 5 IR TITI
Eotch Eront End ; Branch Prgdrcf:on
410 o &1 Unit 5
‘* o ! 415
.
N A
3
Decoders
426
M
¥
sy k: k: ? ?
Lane | Lane ... | Lans
i 1 N-1
B Loop Buffer
. Sl e = Controf Unit
. 430
Loop Buffer 425
3
A ¥ ¥
Y Armedf Tag f Condidence ' Valid
i N
. .
440 7
N ,ﬁ’ Early Loop Buffer Mode Table 435
{4

¥
To Map/Dispateh Unit

FIG. 4

U.S. Patent Oct. 18, 2016

tart - Daterming if @ Loop has
an Unpredictable Exif

Sheet 5 of 7

US 9,471,322 B2

500

P
Bt
¥

o]
!
831

4 Detect a Loop Candidate

510

Enfer Loop ™

515
i)

Enter Loop Buffer Mode

&

., 188

Buffer Mode

Early?

Bt Able 0™
< Predict Loop Exit
e, Condifion?

No

525
8¢ f‘,
Cause the Loog Candidate
to Continue to Wait Before
Entering Loop Bufier Mode

530

" Branch to Start 3
" OFLOOD?

No

"~ Pradiction ™\ Yes

540
3

Dacrement the
Coresponding Confidance
indicator

3

; Matches Taken
™, Branch?

increment the
Corrasponding Confidence
fndicalor

~Confidence ™
indicator >

o, YES

555

J

Set ihe Armed Bitin the
Corresponding Enfry in the
Early Loop Buffer Mode
Table

&

o Thrashold?

FIG. 5

US 9,471,322 B2

Sheet 6 of 7

Oct. 18, 2016

U.S. Patent

'

08
S =)

A
Aiowsyy i
JeLBIXT

¥

5]

H

0oL
m

309
Addng ismod

U.S. Patent Oct. 18, 2016 Sheet 7 of 7 US 9,471,322 B2

Computer Readable Medium 700

e
100

FiG. 7

US 9,471,322 B2

1
EARLY LOOP BUFFER MODE ENTRY UPON
NUMBER OF MISPREDICTIONS OF EXIT
CONDITION EXCEEDING THRESHOLD

BACKGROUND

1. Field of the Invention

The present invention relates generally to processors, and
in particular to methods and mechanisms for determining
when to enter loop buffer mode early for a given loop
candidate.

2. Description of the Related Art

Modern day processors are generally structured as mul-
tiple stages in a pipelined fashion. Typical pipelines often
include separate units for fetching instructions, decoding
instructions, mapping instructions, executing instructions,
and then writing results to another unit, such as a register. An
instruction fetch unit of a microprocessor is responsible for
providing a constant stream of instructions to the next stage
of the processor pipeline. Typically, fetch units utilize an
instruction cache in order to keep the rest of the pipeline
continuously supplied with instructions. The fetch unit and
instruction cache tend to consume a significant amount of
power while performing their required functions. It is a goal
of modern microprocessors to reduce power consumption as
much as possible, especially for microprocessors that are
utilized in battery-powered devices.

In many software applications, the same software steps
may be repeated many times to perform a specific function
or task. In these situations, the fetch unit will continue to
fetch instructions and consume power even though the same
loop of instructions is continuously being executed. If the
loop could be detected and cached in a loop buffer, then the
fetch unit could be shutdown to reduce power consumption
while the loop executes.

SUMMARY

Apparatuses, processors and methods for determining
when to enter loop buffer mode early for loops with unpre-
dictable exits are disclosed.

In one embodiment, loops may be detected and tracked
within an instruction stream being executed by a processor
pipeline. The processor pipeline may include at least a loop
buffer, loop buffer control unit, and branch prediction unit.
The processor may turn off the branch prediction unit when
the processor is in loop buffer mode for a given loop.
Accordingly, the processor will no longer generate an exit
condition prediction for the given loop (e.g., for the loop
terminating branch) after entering loop buffer mode. How-
ever, it may be the case that the branch prediction mecha-
nism may still be able to make accurate branch predictions
for exiting the loop. If the branch prediction is turned off in
such cases, and it is assumed the loop will continue iterating,
then mispredicts will effectively be introduced. In order to
prevent such mispredicts of the loop exit condition for a
given loop candidate, the loop buffer control unit may take
a conservative approach in determining when to enter loop
buffer mode for the given loop candidate. In various embodi-
ments, a determination is made as to when the branch
prediction unit is no longer able to effectively predict an exit
for the given loop. For example, if a branch history register
or other mechanism used to make predictions has saturated
or otherwise reached a state in which it may always provide
a particular prediction, it may be determined that the pre-
dictor is generally no longer useful in the given scenario. As
such, when this state is detected loop buffer mode may be

25

30

35

40

45

50

2

entered and it may be deemed reasonable to disable the
prediction unit in order to prevent the introduction of
additional mispredictions

In various embodiments, the loop buffer control unit may
monitor the exit condition of a given loop over multiple
iterations of the loop to determine whether the loop exit
condition is unpredictable. When the loop buffer control unit
determines the exit condition for the loop to be unpredict-
able (e.g., has a high confidence that the exit condition is
unpredictable), the given loop may be allowed to enter loop
buffer mode early rather than waiting for the above
described conservative approach to entering loop buffer
mode. In one embodiment, the loop buffer control unit may
include a table with a plurality of entries for a plurality of
loops being tracked. Each entry may include multiple fields,
including an armed bit and a confidence indicator, which is
initialized to zero. The confidence indicator may be incre-
mented when the exit condition of the corresponding loop is
a branch mispredict, and the confidence indicator may be
decremented for any other exit condition. When the confi-
dence indicator reaches a certain threshold, then the exit
condition for the loop may be determined to be unpredict-
able. In various embodiments, the armed bit may be set for
this entry and the corresponding loop may be allowed to
enter loop buffer mode early.

These and other features and advantages will become
apparent to those of ordinary skill in the art in view of the
following detailed descriptions of the approaches presented
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the methods and
mechanisms may be better understood by referring to the
following description in conjunction with the accompanying
drawings, in which:

FIG. 1 illustrates one embodiment of a portion of an
integrated circuit.

FIG. 2 is a block diagram that illustrates one embodiment
of a processor core.

FIG. 3 is a block diagram illustrating one embodiment of
a front end of a processor pipeline.

FIG. 4 is a block diagram illustrating another embodiment
of a front end of a processor pipeline.

FIG. 5 is a generalized flow diagram illustrating one
embodiment of a method for determining if a loop candidate
has an unpredictable exit.

FIG. 6 is a block diagram of one embodiment of a system.

FIG. 7 is a block diagram of one embodiment of a
computer readable medium.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various
embodiments may be practiced without these specific
details. In some instances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown in detail to avoid obscuring the
approaches described herein. It will be appreciated that for
simplicity and clarity of illustration, elements shown in the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

US 9,471,322 B2

3

This specification includes references to “one embodi-
ment”. The appearance of the phrase “in one embodiment”
in different contexts does not necessarily refer to the same
embodiment. Particular features, structures, or characteris-
tics may be combined in any suitable manner consistent with
this disclosure. Furthermore, as used throughout this appli-
cation, the word “may” is used in a permissive sense (i.e.,
meaning having the potential to), rather than the mandatory
sense (i.e., meaning must). Similarly, the words “include”,
“including”, and “includes” mean including, but not limited
to.

Terminology. The following paragraphs provide defini-
tions and/or context for terms found in this disclosure
(including the appended claims):

“Comprising.” This term is open-ended. As used in the
appended claims, this term does not foreclose additional
structure or steps. Consider a claim that recites: “A processor
comprising a loop buffer control unit ” Such a claim
does not foreclose the processor from including additional
components (e.g., a cache, a fetch unit, an execution unit).

“Configured To.” Various units, circuits, or other compo-
nents may be described or claimed as “configured to”
perform a task or tasks. In such contexts, “configured to” is
used to connote structure by indicating that the units/
circuits/components include structure (e.g., circuitry) that
performs the task or tasks during operation. As such, the
unit/circuit/component can be said to be configured to
perform the task even when the specified unit/circuit/com-
ponent is not currently operational (e.g., is not on). The
units/circuits/components used with the “configured to”
language include hardware—for example, circuits, memory
storing program instructions executable to implement the
operation, etc. Reciting that a unit/circuit/component is
“configured to” perform one or more tasks is expressly
intended not to invoke 35 U.S.C. §112, sixth paragraph, for
that unit/circuit/component. Additionally, “configured to”
can include generic structure (e.g., generic circuitry) that is
manipulated by software and/or firmware (e.g., an FPGA or
a general-purpose processor executing software) to operate
in a manner that is capable of performing the task(s) at issue.
“Configured to” may also include adapting a manufacturing
process (e.g., a semiconductor fabrication facility) to fabri-
cate devices (e.g., integrated circuits) that are adapted to
implement or perform one or more tasks.

“First,” “Second,” etc. As used herein, these terms are
used as labels for nouns that they precede, and do not imply
any type of ordering (e.g., spatial, temporal, logical, etc.).
For example, the terms “first” and “second” loops can be
used to refer to any two loops.

“Based On.” As used herein, this term is used to describe
one or more factors that affect a determination. This term
does not foreclose additional factors that may affect a
determination. That is, a determination may be solely based
on those factors or based, at least in part, on those factors.
Consider the phrase “determine A based on B.” While B may
be a factor that affects the determination of A, such a phrase
does not foreclose the determination of A from also being
based on C. In other instances, A may be determined based
solely on B.

Referring now to FIG. 1, a block diagram illustrating one
embodiment of a portion of an integrated circuit (IC) is
shown. In the illustrated embodiment, IC 100 includes a
processor complex 112, memory controller 122, and
memory physical interface circuits (PHY's) 124 and 126. It
is noted that IC 100 may also include many other compo-
nents not shown in FIG. 1. In various embodiments, IC 100

5

10

15

20

25

30

35

40

45

50

55

60

65

4

may also be referred to as a system on chip (SoC), an
application specific integrated circuit (ASIC), or an appara-
tus.

Processor complex 112 may include central processing
units (CPUs) 114 and 116, level two (L2) cache 118, and bus
interface unit (BIU) 120. In other embodiments, processor
complex 112 may include other numbers of CPUs. CPUs
114 and 116 may also be referred to as processors or cores.
It is noted that processor complex 112 may include other
components not shown in FIG. 1.

The CPUs 114 and 116 may include circuitry to execute
instructions defined in an instruction set architecture. Spe-
cifically, one or more programs comprising the instructions
may be executed by CPUs 114 and 116. Any instruction set
architecture may be implemented in various embodiments.
For example, in one embodiment, the ARM™ instruction set
architecture (ISA) may be implemented. Other ISA’s may
include the PowerPC™ instruction set, the MIPS™ instruc-
tion set, the SPARC™ instruction set, the x86 instruction set
(also referred to as 1A-32), the [A-64 instruction set, etc.
Other types of ISA’s may also be utilized, including custom-
designed or proprietary ISA’s.

In one embodiment, each instruction executed by CPUs
114 and 116 may be associated with a program counter
address (PC) value. Also, one or more architectural registers
may be specified within some instructions for reads and
writes. These architectural registers may be mapped to
actual physical registers by a register rename unit. Further-
more, some instructions (e.g., ARM Thumb instructions)
may be broken up into a sequence of instruction operations
(or micro-ops), and each instruction operation of the
sequence may be referred to by a unique micro-op (or vop)
number.

Each of CPUs 114 and 116 may also include a level one
(L1) cache (not shown), and each .1 cache may be coupled
to L2 cache 118. Other embodiments may include additional
levels of cache (e.g., level three (I.3) cache). In one embodi-
ment, [.2 cache 118 may be configured to cache instructions
and data for low latency access by CPUs 114 and 116. The
L2 cache 118 may comprise any capacity and configuration
(e.g. direct mapped, set associative). .2 cache 118 may be
coupled to memory controller 122 via BIU 120. BIU 120
may also include various other logic structures to couple
CPUs 114 and 116 and L2 cache 118 to various other devices
and blocks.

Memory controller 122 may include any number of
memory ports and may include circuitry configured to
interface to memory. For example, memory controller 122
may be configured to interface to dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM),
double data rate (DDR) SDRAM, DDR2 SDRAM, Rambus
DRAM (RDRAM), etc. Memory controller 122 may also be
coupled to memory physical interface circuits (PHY's) 124
and 126. Memory PHYs 124 and 126 are representative of
any number of memory PHYs which may be coupled to
memory controller 122. Memory PHY's 124 and 126 may be
configured to interface to memory devices (not shown).

It is noted that other embodiments may include other
combinations of components, including subsets or supersets
of the components shown in FIG. 1 and/or other compo-
nents. While one instance of a given component may be
shown in FIG. 1, other embodiments may include two or
more instances of the given component. Similarly, through-
out this detailed description, embodiments that include only
one instance of a given component may be used even if
multiple instances are shown.

US 9,471,322 B2

5

Turning now to FIG. 2, one embodiment of a processor
core is shown. Core 210 is one example of a processor core,
and core 210 may be utilized within a processor complex,
such as processor complex 112 of FIG. 1. In one embodi-
ment, each of CPUs 114 and 116 of FIG. 1 may include the
components and functionality of core 210. Core 210 may
include fetch and decode (FED) unit 212, map and dispatch
unit 216, memory management unit (MMU) 220, core
interface unit (CIF) 222, execution units 224, and load-store
unit (LSU) 226. It is noted that core 210 may include other
components and interfaces not shown in FIG. 2.

FED unit 212 may include circuitry configured to read
instructions from memory and place them in level one (L1)
instruction cache 214. L1 instruction cache 214 may be a
cache memory for storing instructions to be executed by
core 210. L1 instruction cache 214 may have any capacity
and construction (e.g. direct mapped, set associative, fully
associative). Furthermore, [.1 instruction cache 214 may
have any cache line size. FED unit 212 may also include
branch prediction unit 213 configured to predict branch
instructions and to fetch down the predicted path. Branch
prediction unit 213 is representative of any number of
branch predictors and/or other logical units which may be
utilized for predicting branch directions, branch targets,
return addresses, etc. In one embodiment, branch prediction
unit 213 may include a branch history register (not shown)
for storing branch history information for a given loop being
tracked. In one embodiment, the branch history register may
store information about the last N taken branches, wherein
N is a predetermined number. For example, in one embodi-
ment, whenever there is a taken branch, a new record
corresponding to the branch may be shifted into the branch
history register and an old record may be shifted out. When
a given loop is being executed, and the branch history
register has stored information for N taken branches that
have executed over one or more iterations of the given loop,
the branch history register can be regarded as being “satu-
rated” for the given loop. Once the branch history register
has saturated for the given loop, it may be determined the
prediction generated by the branch prediction unit 213 will
not change. Consequently, continued generation of branch
predictions for the loop may be considered unhelpful and
generally unnecessary. It is noted that “saturation” may
generally refer to any condition in which a branch prediction
unit reaches a state where it will continue to make a given
prediction. As noted above, such a state may correspond to
N taken branches in a branch history register configured to
store a history for N taken branches. In other cases, any
repeating pattern within a branch history prediction mecha-
nism that is determined will produce a known prediction
may also quality as saturation. For example, if a history of
both taken and not taken branches is stored in a register or
other memory device for loop code that is invariant, a
repeating pattern will be generated. Once such a pattern fills
the capacity of the register or memory device for storing
such history information, then saturation may be deemed to
have occurred. It is noted that branch prediction unit 213
may also be referred to as a “prediction unit”. FED unit 212
may also be redirected (e.g. via misprediction, exception,
interrupt, flush, etc.). It is also noted that while the term
branch history “register” is used herein, the term register is
intended to include any memory device configured to store
data.

FED unit 212 may also include loop buffer 215 for storing
the instructions of a given repeating loop after it is deter-
mined that the given loop meets the criteria for entering loop
buffer mode. Core 210 may enter loop buffer mode when a

10

15

20

25

30

35

40

45

50

55

60

65

6

qualifying, repeating loop is detected, causing the loop to be
stored in loop buffer 215 and for instructions to be fed out
of'loop buffer 215 to the rest of the pipeline. While core 210
is in loop buffer mode, L1 instruction cache 214, branch
prediction unit 213, and other logic in FED unit 212 may be
placed in a low power state in order to save power. Accord-
ingly, since branch prediction unit 213 is shut down once
core 210 enters loop buffer mode, core 210 may typically
wait until a branch history register has saturated before
entering loop buffer mode for a given loop so as to avoid
introducing a misprediction. However, if core 210 deter-
mines that a given loop has an unpredictable exit, the given
loop may enter loop buffer mode early rather than waiting
for the branch history register to saturate. Therefore, loops
with unpredictable exits will be able to spend more time in
loop buffer mode.

FED unit 212 may be configured to decode instructions
into instruction operations. In addition, FED unit 212 may
also be configured to decode multiple instructions in paral-
lel. Generally, an instruction operation may be an operation
that the hardware included in execution units 224 and LSU
226 is capable of executing. Each instruction may translate
to one or more instruction operations which, when executed,
result in the performance of the operations defined for that
instruction according to the ISA. It is noted that the terms
“instruction operation” and “uop” may be used interchange-
ably throughout this disclosure. In other embodiments, the
functionality included within FED unit 212 may be split into
two or more separate units, such as a fetch unit, a decode
unit, and/or other units.

In various ISA’s, some instructions may decode into a
single uop. FED unit 212 may be configured to identify the
type of instruction, source operands, etc., and each decoded
instruction operation may comprise the instruction along
with some of the decode information. In other embodiments
in which each instruction translates to a single vop, each uop
may simply be the corresponding instruction or a portion
thereof (e.g., the opcode field or fields of the instruction). In
some embodiments, the FED unit 212 may include any
combination of circuitry and/or microcode for generating
uops for instructions. For example, relatively simple uop
generations (e.g., one or two uops per instruction) may be
handled in hardware while more extensive uop generations
(e.g., more than three uops for an instruction) may be
handled in microcode.

Decoded uops may be provided to map/dispatch unit 216.
Map/dispatch unit 216 may be configured to map uops and
architectural registers to physical registers of core 210.
Map/dispatch unit 216 may implement register renaming to
map source register addresses from the uops to the source
operand numbers identifying the renamed source registers.
Map/dispatch unit 216 may also be configured to dispatch
uops to reservation stations (not shown) within execution
units 224 and LSU 226.

In one embodiment, map/dispatch unit 216 may include
reorder buffer (ROB) 218. In other embodiments, ROB 218
may be located elsewhere. Prior to being dispatched, the
uops may be written to ROB 218. ROB 218 may be
configured to hold uops until they can be committed in order.
Each vop may be assigned a ROB index (RNUM) corre-
sponding to a specific entry in ROB 218. RNUMs may be
used to keep track of the operations in flight in core 210.
Map/dispatch unit 216 may also include other components
(e.g., mapper array, dispatch unit, dispatch buffer) not shown
in FIG. 2. Furthermore, in other embodiments, the function-

US 9,471,322 B2

7

ality included within map/dispatch unit 216 may be split into
two or more separate units, such as a map unit, a dispatch
unit, and/or other units.

Execution units 224 may include any number and type of
execution units (e.g., integer, floating point, vector). Each of
execution units 224 may also include one or more reserva-
tion stations (not shown). CIF 222 may be coupled to LSU
226, FED unit 212, MMU 220, and an [.2 cache (not shown).
CIF 222 may be configured to manage the interface between
core 210 and the [.2 cache. MMU 220 may be configured to
perform address translation and memory management func-
tions.

LSU 226 may include [.1 data cache 228, store queue 230,
and load queue 232. Load and store operations may be
dispatched from map/dispatch unit 216 to reservation sta-
tions within LSU 226. Store queue 230 may store data
corresponding to store operations, and load queue 232 may
store data associated with load operations. LSU 226 may
also be coupled to the 1.2 cache via CIF 222. It is noted that
LSU 226 may also include other components (e.g., reserva-
tion stations, register file, prefetch unit, translation lookaside
buffer) not shown in FIG. 2.

It should be understood that the distribution of function-
ality illustrated in FIG. 2 is not the only possible micro-
architecture which may be utilized for a processor core.
Other processor cores may include other components, omit
one or more of the components shown, and/or include a
different arrangement of functionality among the compo-
nents.

Referring now to FIG. 3, a block diagram of one embodi-
ment of a front end of a processor pipeline is shown. In one
embodiment, the front end logic shown in FIG. 3 may be
located within a fetch and decode unit, such as FED Unit 212
(of FIG. 2). It should be understood that the distribution of
functionality illustrated in FIG. 3 is only one possible
structure for implementing a loop buffer within a processor
pipeline. Other suitable distributions of logic for implement-
ing a loop buffer are possible and are contemplated.

Fetch front end 310 may be configured to fetch and
pre-decode instructions and then convey pre-decoded uops
to loop buffer 320 and the decoders 345 (via multiplexer
340). In one embodiment, fetch front end 310 may be
configured to output a plurality (or N) pre-decoded uops per
cycle.

Loop buffer 320, multiplexer 340, and decoders 345 may
have N lanes for processing and/or storing N uops per cycle,
wherein ‘N’ is a positive integer. Each lane may also include
a valid bit to indicate if the lane contains a valid uop. Fetch
front end 310 may expand instructions into uops, pre-decode
the uvops, and then feed these pre-decoded uops to loop
buffer 320 and multiplexer 340. Each pre-decoded vop may
include instruction opcode bits, instruction predecode bits,
and a vop number. The instruction opcode bits specify the
operation that is to be performed. The predecode bits indi-
cate the number of uops that the instruction maps to. The vop
number represents which uop in a multi-uop instruction
sequence should be generated. In other embodiments, the
instructions may be decoded and formatted in any suitable
manner.

When the processor is not in loop buffer mode, then the
uops output from fetch front end 310 may be conveyed to
decoders 345 via multiplexer 340. A select signal from loop
buffer control unit 325 may be coupled to multiplexer 340 to
determine which path is coupled through multiplexer 340 to
the inputs of decoders 345. When the processor is in loop
buffer mode, uops may be read out of loop buffer 320 and
conveyed to decoders 345. Uops may be conveyed from the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

outputs of decoders 345 to the next stage of the processor
pipeline. In one embodiment, the next stage of the processor
pipeline may be a map/dispatch unit, such as map/dispatch
unit 216 of FIG. 2.

Loop buffer control unit 325 may be configured to iden-
tify a loop within the fetched and pre-decoded instructions.
Once a loop has been identified with some degree of
certainty and meets the criteria for entering loop buffer
mode, the loop may be cached in loop buffer 320, fetch front
end 310 and branch prediction unit 315 may be shutdown,
and then the rest of the processor pipeline may be fed from
loop buffer 320. In one embodiment, one iteration of the
loop may be cached in loop buffer 320, and this cached
iteration may be repeatedly dispatched down the pipeline. In
another embodiment, multiple iterations of the loop may be
cached in loop buffer 320.

To identify a loop for caching, first a backwards taken
branch may be detected among the fetched instructions. A
“backwards taken branch” may be defined as a taken branch
that branches to a previous instruction in the instruction
sequence. The instruction to which the backwards taken
branch goes to may be considered the start of the loop. In
one embodiment, only certain types of loops may be con-
sidered as candidates for buffering. For example, in one
embodiment, for a loop candidate to be considered for
buffering, all of the iterations of the loop have to be
invariant. In other words, the loop candidate executes the
same instruction sequence on each iteration. Additionally, a
loop candidate may need to meet a size requirement so that
it can fit in the loop buffer 320. Furthermore, loops with
indirect taken branches (e.g.,, BX—branch exchange,
BLX—branch with link exchange) in the instruction
sequence of the loop may be excluded from consideration
for buffering. Still further, only one backwards taken branch
per loop may be permitted. The rest of the branches in the
loop should be forward branches. In other embodiments, all
types of loops may be considered, such that all types of loops
may be loop candidates, while the only criteria that may be
enforced may be invariance of the loop. For example, more
than one backwards taken branch may be allowed in a loop
candidate, such as in a nested loop.

Loop buffer control unit 325 may monitor the instruction
stream for instructions that form loops that meet the criteria
for loop buffering. Loop buffer control unit 325 may capture
all of the information of what a given loop candidate looks
like. For a certain amount of time, the loop candidate may
be tracked over multiple iterations to make sure that the loop
candidate stays the same. For example, the distances from
the start of the loop to one or more instructions within the
loop may be recorded on a first iteration and monitored on
subsequent iterations to determine if these distances remain
the same.

In one embodiment, once the same backwards taken
branch has been detected more than once, then a state
machine to capture the information for that loop may be
started by loop buffer control unit 325. In one embodiment,
the decoders 345 may detect a backwards taken branch and
signal this to loop buffer control unit 325. In another
embodiment, fetch front end 310 may detect a backwards
taken branch and convey an indication of the detection to
unit 325. Alternatively, in a further embodiment, unit 325
may monitor the instruction stream for backwards taken
branches and detect backwards taken branches indepen-
dently of decoders 345 or fetch front end 310.

After a certain predetermined amount of time, unit 325
may determine that the loop candidate should be cached in
loop buffer 320. The length of the predetermined amount of

US 9,471,322 B2

9

time may be measured in a variety of ways and based on one
or more of a variety of factors. For example, in one embodi-
ment, the length of the predetermined amount of time may
vary based on whether the loop candidate has an unpredict-
able exit. If the loop candidate does not have an unpredict-
able exit, then unit 325 may wait a first amount of time
before storing the loop candidate in loop buffer 320 and
initiating loop buffer mode. If the loop candidate has an
unpredictable exit, then unit 325 may wait a second amount
of time before storing the loop candidate in loop buffer 320
and initiating loop buffer mode, wherein the second amount
of time is less than the first amount of time. In one embodi-
ment, loop candidates may be categorized into two different
types of groups of loop candidates. The first type is for loop
candidates for which unit 325 has high confidence that the
exit is unpredictable and therefore may enter loop buffer
mode early. In this case the first type is determined to have
an unpredictable exit condition. The second type is for loop
candidates for which unit 325 does not know if the exit is
predictable and so unit 325 defaults to conservatively wait-
ing for the branch history to saturate (at which time the exit
condition is determined to be unpredictable) before entering
loop buffer mode.

The first and second amount of times may be measured in
any of a variety of manners depending on the embodiment.
For example, in one embodiment, the first and second
amounts of time may be measured by a certain number of
iterations of the loop. Alternatively, in another embodiment,
the amounts of time may be based on a number of taken
branches (over one or more iterations of the loop) that have
been detected. In this embodiment, the branch history data
for a loop candidate for which unit 325 does not know if the
exit is predictable may be stored in a register, and when the
branch history saturates, the loop candidate may be allowed
to enter loop buffer mode. However, for loop candidates
with unpredictable exits, these loop candidates may be
allowed to enter loop buffer mode before the branch history
saturates. For example, in one embodiment, a loop candidate
with an unpredictable exit may be allowed to enter loop
buffer mode once the loop is recognized by matching its PC
to the tag value in an armed entry of table 330. In a further
embodiment, the amounts of time may be based on a number
of executed instructions over one or more iterations of the
loop. In other embodiments, other ways of determining the
first and second amount of times may be utilized.

Loop butffer control unit 325 may include or be coupled to
early loop buffer mode table 330. Early loop buffer mode
table 330 may have any number of entries for tracking any
number of loops. Each entry in table 330 may include a
plurality of fields, including an armed bit, a tag, a confidence
indicator, a valid bit, and any number of other attributes. The
tag may be used to identify the loop. In one embodiment, the
tag may be the PC of the backwards taken branch of the
loop. The valid bit may indicate if the entry is for a valid
loop. The confidence indicator may track the confidence
with which the exit condition from the loop can be predicted.
The confidence indicator may have any number of bits,
depending on the embodiment. In one embodiment, each
time there is a misprediction for the exit condition of a given
loop, the confidence indicator may be increased. Each time
the exit condition of the given loop is predicted correctly, the
confidence indicator may be decreased. Once the confidence
indicator reaches a predetermined threshold, the given loop
may be considered as having an unpredictable exit and the
armed bit may be set, allowing the loop to enter loop buffer
mode early.

20

25

30

40

45

55

10

Turning now to FIG. 4, another embodiment of a front end
of a processor pipeline is shown. In one embodiment, loop
buffer 425 may be located downstream from decoders 420 in
the processor pipeline, as shown in FIG. 4. This is in contrast
to loop buffer 320 which is located upstream from decoders
345 in the processor front end shown in FIG. 3.

Fetch front-end 410 may fetch instructions and pre-
decode the fetched instructions into pre-decoded uops. Then,
the pre-decoded uops may be conveyed to decoders 420.
Fetch front-end 410 may be configured to generate and
convey ‘N’ pre-decoded uops per cycle to the ‘N’ lanes of
decoders 420, wherein ‘N’ is any positive integer.

Decoders 420 may decode the pre-decoded uops into
decoded uops. Then, decoders 420 may convey the decoded
uops to the next stage of the processor pipeline via multi-
plexer 440. Also, decoders 420 may convey uops to loop
buffer 425 when a loop candidate has been identified and has
met the criteria for being cached into loop buffer 425. The
outputs of multiplexer 440 may be coupled to the next stage
of'the processor pipeline. In one embodiment, the next stage
of the processor pipeline may be a map/dispatch unit.

Loop buffer 425, loop buffer control unit 430, and early
loop buffer mode table 435 may be configured to perform
functions similar to those described in relation to the pro-
cessor front end shown in FIG. 3. One key difference in FIG.
4 is that loop buffer 425 may store decoded uops as opposed
to loop buffer 320 storing pre-decoded uops in FIG. 3.
Therefore, loop buffer 425 may be of larger size than loop
buffer 320 to accommodate the larger amount of data, since
decoded uops typically have more information than pre-
decoded uops. It is noted that loop buffer 425 may also be
located at other locations within a processor pipeline, in
addition to the two locations shown in FIGS. 3 and 4. For
example, loop buffer 425 may be located within a fetch front
end, or alternatively, loop buffer 425 may be located within
a map/dispatch unit. Depending on where the loop buffer is
located in the pipeline, the contents of the loop that are
stored in the loop buffer may vary based on the amount of
instruction processing that has been performed at that point
in the pipeline.

For certain types of loops, the branch prediction unit 415
may not be able to accurately predict the loop exit condition.
For example, inner-outer loops (e.g., double for loops),
where an inner loop executes and then falls through to an
outer loop which then comes back to execute the inner loop
again. For these loops, waiting until the branch history
saturates decreases the percentage of time that the loop
buffer 425 is utilized. Therefore, entering loop buffer mode
early allows loops with unpredictable exits to spend more
time in loop buffer mode.

Referring now to FIG. 5, one embodiment of a method
500 for determining if a loop has an unpredictable exit is
shown. For purposes of discussion, the steps in this embodi-
ment are shown in sequential order. It should be noted that
in various embodiments of the method described below, one
or more of the elements described may be performed con-
currently, in a different order than shown, or may be omitted
entirely. Other additional elements may also be performed as
desired. Blocks may be performed in parallel in combina-
torial logic circuitry in any of the loop buffer control units
and/or processor front ends described herein. Blocks, com-
binations of blocks, and/or the flowchart as a whole may be
pipelined over multiple clock cycles.

A loop candidate may be detected in an instruction stream
(block 505). It may be assumed for the purposes of this
discussion that the loop candidate meets the criteria (e.g.,
invariance) for going into loop buffer mode. After detecting

US 9,471,322 B2

11

the loop candidate, the loop buffer control unit may deter-
mine if the conditions for entering loop buffer mode early
are met (conditional block 510). In one embodiment, the
loop buffer control unit may determine if the conditions for
entering loop buffer mode early are met by checking if an
entry corresponding to the detected loop candidate in the
early loop buffer mode table is armed. The early loop buffer
mode table may include any number of entries for any
number of loops being tracked. Each entry of the early loop
buffer mode table may include a plurality of fields, including
an armed bit, a valid bit, a confidence indicator, a signature
of the loop, and/or other attributes. A new entry may be
created the first time a loop candidate is detected and the
armed bit of the new entry may be initialized to zero to
indicate the entry is unarmed at initialization.

If the conditions for entering loop buffer mode early are
met (conditional block 510, “yes” leg), then the loop can-
didate may enter loop buffer mode early (block 515). After
block 515, method 500 may return to block 505 to wait for
another loop candidate to be detected.

If the conditions for entering loop buffer mode early are
not met (conditional block 510, “no” leg), the loop buffer
control unit may determine if the branch prediction unit is
still able to predict the loop exit condition (conditional block
520). In one embodiment, the branch prediction unit is still
able to predict the loop exit condition if the branch history
register has not yet saturated. For example, in an embodi-
ment where a branch history register is updated only with
taken branches, once N taken branches have been detected
in a register configured to store a history for N branches, the
register has saturated, loop buffer mode is entered, and the
branch prediction mechanism may be turned off. In other
embodiments, the branch history register may be updated
with taken and/or not taken branches, and the branch history
register may be saturated by any repeating pattern of taken
and/or not taken branches.

If the branch prediction unit is still able to predict the loop
exit condition (conditional block 520, “yes” leg), then the
loop buffer control unit may cause the loop candidate to
continue to wait before entering loop buffer mode (block
525). If the branch prediction unit is no longer able to predict
the loop exit condition (conditional block 520, “no” leg),
then the loop buffer control unit may cause the loop candi-
date to enter loop buffer mode (block 515). After block 525,
the loop buffer control unit may detect that the loop candi-
date has branched from the backwards taken branch to the
start of the loop, which initiates another iteration of the loop
candidate (conditional block 530, “yes” leg). In response to
detecting the new iteration of the loop candidate, the loop
buffer control unit may determine if the branch prediction
mechanism correctly predicted that the backwards taken
branch was taken (conditional block 535). If the backwards
taken branch is not taken (conditional block 530, “no” leg),
then method 500 may return to block 505 and wait to detect
another loop candidate.

If the prediction matched the taken outcome of the
backwards taken branch (conditional block 535, “yes” leg),
then the confidence indicator in the corresponding entry in
the early loop buffer mode table may be decremented (block
540). After block 540, method 500 may return to conditional
block 520 to determine if the branch prediction unit is still
able to predict the loop exit condition. If the prediction does
not match the taken outcome of the backwards taken branch
(conditional block 535, “no” leg), then the confidence indi-
cator in the corresponding entry in the early loop buffer
mode table may be incremented (block 545).

10

15

20

25

30

35

40

45

50

55

60

65

12

Next, the confidence indicator may be compared to a
predetermined threshold (conditional block 550). If the
confidence indicator is greater than the predetermined
threshold (conditional block 550, “yes” leg), then the armed
bit may be set for the corresponding entry in the early loop
buffer mode table (block 555). By setting the armed bit for
this loop, the loop buffer control unit is designating the loop
as having an unpredictable exit. After block 555, method
500 may return to block 515 to enter loop buffer mode early.
If the confidence indicator is less than or equal to the
predetermined threshold (conditional block 550, “no” leg),
then the corresponding entry may remain unarmed and
method 500 may return to conditional block 520 to deter-
mine if the branch prediction unit is still able to predict the
loop exit condition. It is noted that it is assumed for the
purposes of this discussion that the loop candidate is invari-
ant. If the loop buffer control unit detects that a given loop
candidate has changed from one iteration to the next, then
method 500 may return to block 505 and wait for another
loop candidate to be detected.

Turning next to FIG. 6, a block diagram of one embodi-
ment of a system 600 is shown. As shown, system 600 may
represent chip, circuitry, components, etc., of a desktop
computer 610, laptop computer 620, tablet computer 630,
cell phone 640, television 650 (or set top box configured to
be coupled to a television), or otherwise. In the illustrated
embodiment, the system 600 includes at least one instance
of IC 100 (of FIG. 1) coupled to an external memory 602.

IC 100 is coupled to one or more peripherals 604 and the
external memory 602. A power supply 606 is also provided
which supplies the supply voltages to IC 100 as well as one
or more supply voltages to the memory 602 and/or the
peripherals 604. In various embodiments, power supply 606
may represent a battery (e.g., a rechargeable battery in a
smart phone, laptop or tablet computer). In some embodi-
ments, more than one instance of IC 100 may be included
(and more than one external memory 602 may be included
as well).

The memory 602 may be any type of memory, such as
dynamic random access memory (DRAM), synchronous
DRAM (SDRAM), double data rate (DDR, DDR2, DDR3,
etc.) SDRAM (including mobile versions of the SDRAMs
such as mDDR3, etc., and/or low power versions of the
SDRAMs such as LPDDR2, etc.), RAMBUS DRAM
(RDRAM), static RAM (SRAM), etc. One or more memory
devices may be coupled onto a circuit board to form memory
modules such as single inline memory modules (SIMMs),
dual inline memory modules (DIMMs), etc.

The peripherals 604 may include any desired circuitry,
depending on the type of system 600. For example, in one
embodiment, peripherals 604 may include devices for vari-
ous types of wireless communication, such as wifi, Blu-
etooth, cellular, global positioning system, etc. The periph-
erals 604 may also include additional storage, including
RAM storage, solid state storage, or disk storage. The
peripherals 604 may include user interface devices such as
a display screen, including touch display screens or multi-
touch display screens, keyboard or other input devices,
microphones, speakers, etc.

Referring now to FIG. 7, one embodiment of a block
diagram of a computer readable medium 700 including one
or more data structures representative of the circuitry
included in IC 100 (of FIG. 1) is shown. Generally speaking,
computer readable medium 700 may include any non-
transitory storage media such as magnetic or optical media,
e.g., disk, CD-ROM, or DVD-ROM, volatile or non-volatile
memory media such as RAM (e.g. SDRAM, RDRAM,

US 9,471,322 B2

13
SRAM, etc.), ROM, etc., as well as media accessible via
transmission media or signals such as electrical, electromag-
netic, or digital signals, conveyed via a communication
medium such as a network and/or a wireless link.

Generally, the data structure(s) of the circuitry on the
computer readable medium 700 may be read by a program
and used, directly or indirectly, to fabricate the hardware
comprising the circuitry. For example, the data structure(s)
may include one or more behavioral-level descriptions or
register-transfer level (RTL) descriptions of the hardware
functionality in a high level design language (HDL) such as
Verilog or VHDL. The description(s) may be read by a
synthesis tool which may synthesize the description to
produce one or more netlists comprising lists of gates from
a synthesis library. The netlist(s) comprise a set of gates
which also represent the functionality of the hardware
comprising the circuitry. The netlist(s) may then be placed
and routed to produce one or more data sets describing
geometric shapes to be applied to masks. The masks may
then be used in various semiconductor fabrication steps to
produce a semiconductor circuit or circuits corresponding to
the circuitry. Alternatively, the data structure(s) on computer
readable medium 700 may be the netlist(s) (with or without
the synthesis library) or the data set(s), as desired. In yet
another alternative, the data structures may comprise the
output of a schematic program, or netlist(s) or data set(s)
derived therefrom.

While computer readable medium 700 includes a repre-
sentation of IC 100, other embodiments may include a
representation of any portion or combination of portions of
1C 100 (e.g., loop buffer, loop buffer control unit).

It should be emphasized that the above-described embodi-
ments are only non-limiting examples of implementations.
Numerous variations and modifications will become appar-
ent to those skilled in the art once the above disclosure is
fully appreciated. It is intended that the following claims be
interpreted to embrace all such variations and modifications.

What is claimed is:

1. A processor comprising:

an instruction cache configured to store instructions;

a prediction unit configured to predict a loop exit condi-
tion;

a loop buffer configured to store instructions correspond-
ing to one or more loops, wherein responsive to detect-
ing the processor is in a loop buffer mode, instructions
are dispatched from the loop buffer rather than the
instruction cache,; and

a loop buffer control unit coupled to the loop buffer,
wherein the loop buffer control unit is configured to
enter the loop buffer mode for a first loop responsive to
determining the first loop has an unpredictable exit,
wherein determining the first loop has an unpredictable
exit comprises detecting a number of mispredictions of
an exit condition for the first loop exceeds a threshold.

2. The processor as recited in claim 1, wherein the
processor is configured to shut down at least one of the
prediction unit and the instruction cache responsive to
detecting the processor is in the loop buffer mode.

3. The processor as recited in claim 1, wherein the loop
buffer control unit is further configured to determine the first
loop has an unpredictable exit responsive to determining a
prediction provided by the prediction unit will not change
for the first loop.

4. The processor as recited in claim 3, wherein determin-
ing the prediction provided by the prediction unit will not
change comprises determining the prediction unit has stored

15

20

25

30

40

45

14

information for N taken branches that have executed over
one or more iterations of the first loop, where N is an integer.

5. The processor as recited in claim 3, wherein determin-
ing the prediction provided by the prediction unit for the first
loop will not change comprises detecting a given pattern in
a branch history register.

6. The processor as recited in claim 1, wherein the loop
buffer control unit is further configured to maintain a con-
fidence indicator associated with the first loop, wherein the
confidence indicator indicates a difference between a num-
ber of mispredictions of the exit condition for the first loop
and a number of correct predictions of the exit condition.

7. The processor as recited in claim 6, wherein the loop
buffer control unit is further configured to:

decrease the confidence indicator each time the prediction

unit correctly predicts the exit condition of the first
loop; and

increase the confidence indicator each time the prediction

unit mispredicts the exit condition of the first loop.

8. A system comprising:

a processor comprising an instruction cache; and

one or more memories;

wherein the processor is configured to:

detect a first loop in a stream of instructions; and

enter a loop buffer mode for the first loop responsive to
determining the first loop has an unpredictable exit,
wherein determining the first loop has an unpredict-
able exit comprises detecting a number of mispre-
dictions of an exit condition for the first loop exceeds
a threshold; and

dispatch instructions from a loop buffer rather than the
instruction cache, in response to detecting the loop
buffer mode.

9. The system as recited in claim 8, wherein the processor
is configured to shut down at least one of a prediction unit
configured to predict a loop exit condition and a memory of
the one or more memories responsive to detecting the loop
buffer mode.

10. The system as recited in claim 8, wherein the proces-
sor is further configured to determine the first loop has an
unpredictable exit responsive to determining a prediction
provided by a prediction unit configured to predict a loop
exit condition for the first loop will not change.

11. The system as recited in claim 10, wherein determin-
ing the prediction provided by the prediction unit will not
change comprises determining the prediction unit has stored
information for N taken branches that have executed over
one or more iterations of the first loop, where N is an integer.

12. The system as recited in claim 10, wherein determin-
ing the prediction provided by the prediction unit for the first
loop will not change comprises detecting a given pattern in
a branch history register.

13. The system as recited in claim 8, wherein the proces-
sor is further configured to maintain a confidence indicator
associated with the first loop, wherein the confidence indi-
cator indicates a difference between a number of mispredic-
tions of the exit condition for the first loop and a number of
correct predictions of the exit condition for the first loop.

14. The system as recited in claim 13, wherein the
processor is further configured to:

decrease the confidence indicator each time the prediction

unit correctly predicts the exit condition of the first
loop; and

increase the confidence indicator each time the prediction

unit mispredicts the exit condition of the first loop.

15. A method comprising:

detecting a first loop in an instruction stream;

US 9,471,322 B2

15

entering a loop buffer mode for the first loop responsive
to determining the first loop has an unpredictable exit,
wherein determining the first loop has an unpredictable
exit comprises detecting a number of mispredictions of
an exit condition for the first loop exceeds a threshold;
and

dispatching instructions from a loop buffer rather than an

instruction cache, in response to detecting the loop
buffer mode.

16. The method as recited in claim 15, further comprising
shutting down at least one of a prediction unit configured to
predict a loop exit condition and the instruction cache
responsive to detecting the processor is in the loop buffer
mode.

17. The method as recited in claim 15, further comprising
determining the first loop has an unpredictable exit respon-
sive to determining a prediction provided by a prediction
unit configured to predict a loop exit condition will not
change for the first loop.

16

18. The method as recited in claim 17, wherein determin-
ing the prediction provided by the prediction unit will not
change comprises determining the prediction unit has stored
information for N taken branches that have executed over
one or more iterations of the first loop, where N is an integer.

19. The method as recited in claim 17, wherein determin-
ing the prediction provided by the prediction unit for the first
loop will not change comprises detecting a given pattern in
a branch history register.

20. The method as recited in claim 15, further comprising
maintaining a confidence indicator associated with the first
loop, wherein the confidence indicator indicates a difference
between a number of mispredictions of the exit condition for
the first loop and a number of correct predictions of the exit
condition for the first loop.

#* #* #* #* #*

